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ABSTRACT 

A theoretical study of the inverse-pinch plasma switch was conducted using a computer 

simulation code. The code was based on a 2-D, 2-temperature magnetohydrodynamic 

(MHD) model. The application of this code was limited to the disk-type inverse-pinch 

plasma switch. The results of the computer analysis appear to be in agreement with the 

experimental results when the same parameters are used. 

A novel inverse-pinch plasma switch for closing has been designed and tested for high- 

power switching requirements. An azimuthally uniform initiation of breakdown is a key 

factor in achieving an inverse-pinch current path in the switch. Thus, various types of 

triggers, such as trigger pins, wire-brush, ring trigger, and hypocycloidal-pinch (HCP) 

devices have been tested for uniform breakdown. 

Recently, triggering was achieved by injection of a plasma-ring (plasma puff) that ie 

produced separately with hypocycloidal-pinch electrodes placed under the cathode of the 

main gap. The current paths at switch closing, initiated by the injection of a plasma-ring 

from the HCP trigger are azimuthally uniform, and the local current density is significantly 

reduced, so that damage to the electrodes and the insulator surfaces is minimized. The test 

results indicate that electron bombardment on the electrodes is four orders of magnitude 

less than that of a spark-gap switch for the same switching power. Indeed, a few thousand 

shots with peak current exceeding a mega-ampere and with hold-off voltage up to 20 kV 

have been conducted without showing measurable damage to the electrodes and insulators. 
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1. INTRODUCTION 

The research efforts in developing the inverse-pinch switch (11 have been directed to- 

ward space applications such as high power laser pumping, electric magnetic (EM) launch- 

ers and magnetoplasmadynamic (MPD) thrusters. The requirements for such space appli- 

cations are: long life operation (> 10” shots or 1 H, for 30 years), high reliability with no 

pre-fire (< 1 out of lo4 failure rate), and high power transfer (> 10” V-A). Achieving the 

above requirements with conventional or other spark gaps falls short mainly due to the 

short life span or irregular reproducibility of these devices. In addition, other requirements 

such as fast rise time, high current handling capability, fast recovery time (which affects 

the repetition rate), high hold-off voltage, fast thermal energy dissipation, and reduction of 

component damage have been posed as formidable tasks to be resolved. Thus much effort 

has been expended in pursuit of a switch which is able to meet the above fundamental 

requirements. 

The inverse-pinch switch is regarded as a promising, long life switch because it dis- 

perses the current sheet over a large area, reducing the current density. 

Several prototypes [2, 3) of the inverse-pinch switch have been constructed for exper- 

imental evaluation. A schematic diagram of one of the prototypes, which is currently in 

the process of experimental evaluation, is shown in Fig. 1. The basic principle that makes 

this switch unique is the inverse-pinch of a current sheet which is formed in an annular 

gap between the inner and outer electrodes which are placed coaxially. Since the field 

induced in the inverse-pinch geometry interacts with the current, this interaction directs 

the current sheet to move axially upward, spreading the current sheet over a large active 

area of the electrodes. 

This study encompasses a theoretical analysis by computer simulation of the inverse- 

pinch plasma switch and the experimental work which was specially performed for exploring 
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Figure 1. Inverse-pinch switch with plasma puff trigger 
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a trigger mechanism for uniform breakdown. The computer simulation was developed for 

the geometry of the disk-type inverse-pinch plasma switch (Fig. 2). In the experiment, 

four different trigger methods were tested and their results were analyzed on the basis of 

hold-off voltage and gas pressure. 
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CROSS SECTION OF INVERSE-PINCH SWITCH 

OBSERVATION WINDOW 

INSULATOR {TO VACUUM PUMP 

Figure 2. The cross-section view of the inverse-pinch switch which was used for experimental 
and simulation studies 

4 



11. THEORETICAL STUDY 

11-1. Introduction. 

The theoretical study which includes modeling and numerical simulation is an essential 

part for the development of the new switch. The important areas of the study are: 

1. Analysis of the closing phase with respect to achieving uniform breakdown with less 

jitter. 

2. Analysis of the current sheet behavior in the gap of the annular electrodes during the 

run-down phase for inductive storage. 

3. Understanding and analysis of the plasma dynamic behavior under strong plasma- 

magnetic field interaction during the opening phase. 

The study presented here concentrated on the run-down phase of a switching current based 

on the inverse-pinch geometry which is shown in Fig. 2. 

The major phenomena which appear during switching action are the current sheet for- 

mation and its subsequent motion in time and position, the variations of plasma transport 

parameters and the plasma dynamic behavior. These are the key factors that determine 

directly or indirectly the rise time of current, the peak current, the wear pattern of elec- 

trodes, etc. 

The study by numerical simulation determines the plasma parameters at the location 

and time of the peak current. Subsequently, the plasma parameters could be used for 

determining the rise time, and the dimension of the switch (including its inductance). 

The simulation code for the inverse-pinch geometry was developed for simulating the 

dynamics of the switch illustrated in Fig. 2. The code could be employed in a parametric 

study of this switch, and optimal values for various design parameters could be obtained. 

The results from this study could also be applied to the experimental study for scaling-up 

5 



purposes, for an upgrade of the switch hardware, and for the performance analysis of the 

modified switch. 

II-2. MHD and Pulse Forming Network (PFN) Equations. 

The frame of simulation code is based on a complete set of equations for plasma fluid 

model (or MHD) and plasma transport parameters. The set of equations for the plasma 

fluid model given below were used for the analyses of dynamics of current sheet motion 

in the disk gap of a co-axial inverse-pinch plasma switch (Fig. 2). The equations were 

set up for a two-temperature model and the computational code for these equations was 

developed for the 2-dimensional geometry because of the axial symmetry condition of the 

switch geometry (Fig. 2). 

The continuitv equation: 

2 + v (pV) = 0 
at 

The momentum equation: 

i3V 1 p a t  + p(V . V) v + V[n(k T, + k Ti)] = - ( J  x B)  - v . T 
C 

The enerw equation for ions: 

k a  k a 

= Q; + Z [ J *  VT; + P V  * (-)I 
- -(.Ti) + -v * (n T; V) + k n T;(V 
7-1 at 7-1 

€ J 
P 

(3) 

I 6 



The enerw equation for electrons: 

I '  

I .  

The magnetic field equation: 

1 aH € J x H - 1/2VP - = V x (V x H) - V x (Y J )  - - V x ( 
at 2 P 

where 

B - the magnetic induction, Gauss., 

c - the speed of light, 2.99793 x lo8 m/sec., 

El - the magnetic field strength, Cersted, 

J - the current density, amp/cm2, 

k - the Boltzmann's constant, 1.38 x ergs/K, 

me - the mass of electron, 9.1086 x ~ O - ~ ~  kg 

mi - the mass of ion, 

n - the number density of electrons or ions, ~ r n - ~ ,  

P - the pressure, dynes/cm2, 

Qi - the ion energy change due to electron-ion collisions, 

qe - the conductive heat loss of electrons, 

qi - the conductive heat loss of ions, 

Te - the electron temperature, K, 

Ti - the ion temperature, K, 

V - the mass velocity vector of the electron and ion fluids, 

Wei - the non-relativistic Bremsstrahlung loss rate, 

a - the tensor component of coordinate, 

p - the tensor component of coordinate, 

(5) 
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7 - the ratio of the specific heat, 

p - the density of the electron and ion fluids, 

( - the Hall effect exchange coefficient, mi/e, 

q - the resistivity of plasma, 

A - the ion viscosity tensor, 

v - the magnetic viscosity. 

Equations (1)-(5) are integrated in the switching domain with the electric circuit 

(or PFN) equations. Since the PFN equations (6)-(9) below were developed based on a 

standard formation of pulse forming circuit (PFC), as shown in Fig. 3, (6)-(9) could be 

easily modified according to the formation of the PFN. The terminal voltage drop (Vc) at 

capacitor of the PFN is 

dI dIP dIP 
d t  d t  d t  Vc = RE I +  LE- + La-- + L - + R, I ,  

And the terminal voltages for the leak and plasma current while switching are the same. 

Thus 

The total circuit is 

dVc 
dt 

I = I L  + I ,  = - 

There is another equation that can be expressed for the z-pinch area. At z-pinch area, 

the plasma inductance (Lp) varies with respect to time, 

+V,T + - r 
rZt 

RO “I (9) 

where the subscripts 0, t, t ,  and z denote the outside diameter, t-coordinate, bottom tip of 

anode, and z-coordinate, respectively. 
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Plasma Resistance 

Figure 3. The pulse forming network (PFN) diagram 
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Then the above 9 equations are transformed into numerical forms by employing the 

alternating direction implicit (ADI) scheme for the time domain of a 2-dimensional geome- 

try. The number of numerical forms after transformation becomes 14 equations. The AD1 

scheme for the 14 numerical equations forms tri-diagonal matrices and requires the inverse 

of tri-diagonal matrices for the solution. 

The general expressions of the plasma parameters were already included in (1)-(5). 

These parameters are the ion viscosity tensor (a in (2) and (3)), the conduction loss of 

ions (g; in (3)), the conduction loss of electrons (ae in (4)), the Hall effects (the last terms 

of (3) and (ti)), the ion energy change due to electron-ion collisions (9; in (3) and (4)), 

the Joule heating (q  in (4)), the Bremsstrahlung (We; in (4)), the electron density (n in 

(2)-(4)), the magnetic viscosity (v in (S)), and the Coulomb logarithm. 

The ion viscosity tensor, a, in a strong magnetic field (UT >> 1) has the following 

form in the cylindrical coordinate system with z-axis perpendicular to the magnetic field: 

4 du 2 1 d(rv) 
aZZ = -0.96n;T;r;[- 3 - dz - - 3 - r -3 ar 

aU 1 d(rv) d V  
0.32 - - - b ' (2~)  -1 dr 

rr,. = n; 2'; T; [0.64 - - a2 r dr 

d V  

dr 
are = r e ,  = 2 n; T; T; [w; r; b"(2~)  -1 
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where 

1.2(wr)' + 2.23 
b'(w) = ( ~ 7 ) ~  + 4 . 0 3 ( w ~ ) ~  + 2.33 

- ( w T ) ~  - 2.38 
V ( w )  = 

( ~ 7 ) ~  + 4 . 0 3 ( w ~ ) ~  + 2.33 

The symbols u and u denote the velocity component in the z and r directions. 

The time between the ion collisions could be described by 

3 f i  
7; = 

4fiXe4n,Z4 

where X is the Coulomb logarithm. 

The conduction loss of electrons is described by 

where 
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The above parameters, as a function of 2, may be found in various publications (i.e., 

[4]). For 2 = 1, 

The conduction loss of ions is 

1 (2w;r; + 2 . 6 4 5 ) V ~ T i  - (2.5w;r; + 4.65)~i(wi x VTi) 
(~ i r i ) l+  2 . 7 0 ( ~ ; ~ i ) ~  + 0.677 

+ 
where 

The last terms of (3) and (5) represent the Hall effects. The exchange coefficient of 

the Hall effects is mile. 

The collision term in (3) and (4) can be described by 

where r e i  is the electron-ion relaxation time [5] 

10 312 
r e i  = 1.051 x 10 T, /n,A p e c  

The resistivity of the plasma used in the numerical calculation is 

q = 3.3 x 10-4 A / T , ~ / ~  mn - cm 
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The radiation loss due to the non-relativistic Bremsstrahlung may be described by [6] 

where a is the ionization rate and t o  is the Larmor radius. For the e - e case, the loss 

rates are 

The electron density is given by the Saha equation 

where n, is the total concentration of the easily ionized component (= ni + ne),  V the 

ionization potential of the ionized components, and h the Planck’s constant. 

The magnetic viscosity is . 

where Ti is in keV and A is the ratio of m; and m,, (proton mass). The coulomb logarithm, 

A, is here given by 

11-3. Applications of MHD Simulation Code. 

The simulation code as shown in the block of Fig. 4 and in the flow chart of Fig. 5 was 

used for the disc-type inverse-pinch plasma switch (Fig. 2) in which the current sheet has 

a motion in the radial direction. The results are shown in Figs. 69. Figure 6 shows the 

switch current that was fed into the switch from the external high voltage power supply. 
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PLASMA ELECTRON TEUPERATURE 
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Figure 4. Simulation procedure for a high power inverse-pinch switch 
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Figure 5. Switch computer simulation model flow chart 
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Figure 6. The simulation result of switch current that was fed into the switch (shown in Fig. 
5) from the high voltage power supply with respect to time. The circuit parameters 
were arbitrarily selected for the switch simulation model. 
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The PFN parameters used in the code are a discharging voltage of 10 kV, a capacitance of 

20 pF, a switch inductance of 11 nH, and a resistance of 5 fl. The peak current in Fig. 6 

responds to the rise time of the switch that is, in general, controlled by circuit and switch 

inductances. 

Figures 7 and 8 show the profiles of radial velocity and density along the radial direc- 

tion at various times before the current reaches the peak level. From Figs. 7 and 8, we can 

see that the current sheet could move out of the radius of the disc electrodes before the 

time of the peak current. Such phenomena are also found in the streak mode picture [3]. 

Figure 9 shows the current sheet velocities as a function of peak current at  two different 

pressures of filled gas (N2) in both measurement and computer simulation cases. The sim- 

ulation results are in general agreement with the measured velocities in many cases. The 

differences may be due to the resolution of streak-photo and accuracy in photo reading, 

or in some cases to the unpredictable performance of the switch in experiments. Since the 

reproducibility of the plasma is within the range of an order of magnitude. Accordingly, 

the results from the simulation study are acceptable and useful for the initial design of the 

switch. 

The MHD and PFN equations which are integrated with the plasma parameters ((10)- 

(22)) require the initial and boundary conditions according to the physical configuration 

of the switch which is under consideration. The initial and boundary conditions are de- 

termined by the initial PFN parameters and active switching space. In other words, the 

initial conditions are set by current, voltage, and inductance from the electrical circuit, and 

the working gas pressure. The boundary conditions are set by the volume of the switch 

where the plasma current becomes active and described by flow, thermal, and magnetic 

fields. 

With the initial and boundary conditions, the switch domain is divided into a small 

mesh size to accommodate the steep gradient at the front of the current sheet. Because 

of non-linear phenomena associated with physical parameters such as Bremsstrahlung, 

17 
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electron-ion collision transfer, viscosity, and conductivity, there is a tendency for the most 

important physical processes to occur in very thin compressed regions. The simulation 

code was not written for a thin layer analysis, but it is strongly recommended that the 

finite difference grid system must resolve very thin layers, and since their locations are not 

known a priori, an adaptive type of grid should be employed. 
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III. EXPERIMENTAL WORK 

III-1. Introduction. 

The inverse-pinch plasma switches (Figs. 1 and 2) require a uniform breakdown around 

the annular gap for current sheet formation. This uniform breakdown by a trigger is a key 

factor for successful operation of the inverse-pinch switch. 

Several approaches to achieve a uniform breakdown have been attempted. These in- 

clude trigger pins, ring trigger, wire-brush trigger, and hypocycloidal-pinch (HCP) plasma 

puff trigger. 

The experimental apparatus consists of the capacitor bank, a power supply, a Marx 

generator for a high voltage trigger pulse, and a vacuum pump unit. The capacitor bank 

is composed of 18 capacitors in parallel having a total storage energy of 76 kJ, a total 

capacitance of 61 pF, and a design voltage of up to 50 kV. The trigger pulse, with a 30 

118 rise time, is generated by using a Marx generator which amplifies the voltage by a 

factor of 6. Figure 10 shows a schematic of the inverse-pinch plasma switch experiment. 

As diagnostic tools, two dual beam oscilloscopes and two image converter cameras (ICC) 

were employed. One ICC was set with exposure times of 200 ns for the frame mode, while 

the second ICC was set with exposure times of 200 ns with resolution of 5 ns. 

The electrical parameters of the circuit are obtained from Rogowskii coils and voltage 

dividers. When a Rogowskii coil is coupled with an RC integrating circuit, its output 

I voltage is linearly related to the switching current. By using the capacitor charging voltage 

and the peak current measured from the Rogowskii coil signal, the switch performance may 

be rated with a single parameter P = V x I. The Rogowskii coil is accurate to f 30 percent 

when the discharge frequency is greater than 95 kH,. A vacuum pump is used to evacuate 

the switch chamber pressure down to 10 mTorr. 
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Measurements were made to test the characteristics of the wire-brush trigger, HCP 

plasma puff trigger, and ring trigger mechanisms, as well as the performance of the 

inverse-pinch switch. These measurements were made with frame photographs, streak 

photographs, and voltage and current signals on the low pressure side of the Paschen 

curve. For the inverse-pinch switch (Fig. l), an initial uniform breakdown is a key factor 

for obtaining reproducible switching and long life operation. Accordingly, the development 

of an inverse-pinch switch depends on finding a suitable trigger mechanism. Trigger mecha- 

nisms such as the trigger pins [2], ring trigger, wire-brush trigger, and hypocycloidal-pinch 

(HCP) plasma puff [3] have been tested. 

111-2. Trigger Pins. 

By using trigger pins with a trigger pulse having 100 11s rise time, the desired uniform 

breakdown and reproducibility of the inverse-pinch switch were limited [2] to less than 20% 

at a pressure of 10 mTorr. A fast, high voltage trigger pulse to the trigger pins improved 

the reproducibility somewhat, but the weaf of the trigger pins was significant and the 

switch therefore had a short life. 

III-3. Ring Trigger. 

Most recently, the inverse-pinch plasma switch has employed the electron avalanche 

trigger [7] (or the ring trigger) for uniform breakdown. The sharp edge of the ring trigger 

was placed at the bottom of the switch facing the inner electrode of the inverse-pinch 

switch through the annular window between the inner and outer electrodes (Fig. 1 of [7]). 

Accordingly, when a fast, high voltage trigger pulse of approximately 60 kV from the 

mini-Marx generator was applied to the gap between the sharp edge of ring trigger and 

the main inner electrode, which held off 14 kV, the total voltage difference was 74 kV. 

In low pressure operation (5  30 mTorr) of the switch, with the voltage difference of 75 
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kV, a uniform breakdown by electron avalanche was observed. The frame photographs of 

the image converter camera show this resulting uniform breakdown (Fig. 2 of [7]). The 

uniform breakdown with the ring trigger was repeatedly observed only for low pressures. 

Figure 10 shows the experimental data. The main current signal was measured by the 

Rogowskii coil while the system parameters which are shown in Fig. 11 were maintained. 

I 

I 111-4. W ire-Brush Trigger. 

~ The sharp edge ring from the ring trigger was removed, and tungsten wires, which had 

a diameter of approximately 1 mm were embedded with a protrusion of 2 mm in the area 

where the sharp edge ring was originally. Tests were conducted to 6nd the appropriate 

pressure range for uniform breakdown. A fast, high voltage trigger pulse of 60 kV and 

30 11s rise time was fed into the area between the wire-brush triggers and the main inner 

electrode of the inverse-pinch switch. The breakdown appears to be irregular and non- 

uniform at low pressure. However, at  the high pressure portion of the Paschen curve, the 

breakdown became uniform. Typical measurement data are shown in Fig. 12. 

111-5. Hypocycloidal-Pinch (HCP) Plasma Puff (HCP3) Trigger. 

The HCP device was invented by J. H. Lee [8] to create a high density and high 

temperature plasma for nuclear fusion. This device has also been used as a light source 

for high energy laser (HEL) pumping [9]. 

Since the invention of the inverse-pinch switch [lo], the trigger mechanism has be- 

come a key component in achieving a uniform breakdown. Despite the many advantages 

of the inverse-pinch switch over conventional switches in high power applications, the de- 

velopment of this switch has been slowed by the lack of a suitable trigger mechanism. 

The HCP device appears to be very suitable for a trigger because it creates a uniform 

azimuthal plasma which is then compressed. This HCP device has been demonstrated as 
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Figure 11. Main current signal (with ring trigger) 
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a good plasma source in many other applications. Subsequently, the combination of the 

inversepinch switch and HCP device as a trigger is a perfect match. Figure 13 shows 

a three-dimensional cut-away view of the HCP3 which was attached to the inverse-pinch 

switch (Fig. 1 which shows a cross section of the overall picture). 

The initial current over the HCP insulator is produced by a surface flash-over due to 

an applied over-voltage. The current-sheet is then compressed towards the axial column of 

the main switch inner electrode by the ponderomotive force (3 x 3) which is created by 

the interaction of the induced field with the current density. This compressed plasma sheet 

eventually reaches the annular opening of the HCP3 trigger which faces the gap between 

the inner and outer electrodes of the switch, and then is injected into the gap to connect 

the main electrodes of the switch. 

Various sizes (from 5 cm to 15 cm diameters) of the HCP3 trigger, which is coaxial 

and located below the outer electrode of the inverse-pinch switch, have been tested to find 

the optimal pressure range for uniform breakdown. In general, the test results show that 

an HCP3 trigger with a large diameter (15 cm, which is the diameter measured at  the outer 

end where the initial connection of trigger current takes place over the HCP insulator) has 

less frequent uniform breakdown than that an HCP3 trigger with a small diameter. 

A large diameter HCP3 trigger requires a high energy input to initiate a surface flash 

over the HCP insulator. The energy requirement of the HCP3 trigger is approximately 

proportional to the square of the diameter of the HCP insulator. For instance, consider 

a trigger pulse generator that can deliver 100 J of energy to the HCP3 trigger whose 

insulator has an outer diameter of 15 cm and width of 2 cm. The energy density over the 

HCP insulator, at break down, is 2.27 J/cm2. With the same energy input from a trigger 

pulse generator, the HCP3 which has the diameter of 5 cm and a 2 cm wide circular strip 

insulator has an energy density of 8 J/cm2. As in this example, the reduction of the HCP 

outer diameter is desirable for the use of a fixed trigger pulse. On the other hand, the long 

arc runner distance with a large outer diameter of an HCP3 is desirable to obtain sufficient 
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formative time for the HCP plasma which is eventually injected into the gap between the 

main inner and outer electrodes. This formative time of the HCP plasma is necessary for 

a uniform, high density plasma. However, the longer the formative time, the more noise is 

generated and the longer the delay. The noise may be prevented by an all metal chamber 

of the HCP3 trigger but some leakage of noise still appeared in the experimental data (Fig. 

14). As a result, a small outer diameter HCP3 switch is suitable for uniform breakdown 

with low noise and short delay. Delays to the main switching are mainly related to the 

chamber gas pressure and discharge voltage. The velocity of the current sheet in the HCP 

device is proportional to the discharging voltage and inversely proportional to the square 

root of the HCP pressure. Accordingly, for the same distance traveled by the current sheet 

to the inner annular opening of the HCP which faces the gap between the inner and outer 

electrodes of the switch, the time delay is proportional to the square root of the HCP 

pressure and inversely proportional to the discharging voltage.That is, the time delay Atd 

is 

I 

where p is the HCP chamber pressure and E is the discharge voltage. 

Figure 15 shows the delay time of the switch at three different pressures of nitrogen gas. 

Figure 14 shows that higher pressure results in greater delay. The charging voltage rate 

on the x-axis of Fig. 14 represents the ratio of the discharge voltage to the self breakdown 

voltage. Accordingly, one can find the data points for 50 torr pressure which clearly show 

the inverse proportionality of the delay time with respect to the discharge voltage. 
I 

I 
I In this case, the size of the HCP electrode is limited only by the diameter of the main 

electrode column in the inverse-pinch switch. Figure 16 shows the ICC frame mode pictures 

for non-uniform breakdown of the HCP3 having a diameter of 15 cm, at  various pressures. 

These pictures reveal that the trigger pulse energy from the mini-Marx generator was not 



Figure 14. Switch current reading (200 torr 6.5 kV, main, 4.5 kV trigger, 5 V/div.) leading edge 
of wave form shows noise carrier 
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Q 25 mtorr 50 mtorr 

E 30 mtorr a 100 mtorr 

Figure 16. Triggering discharge profiles at  different pressures using focus mode of image converter 
camera (exposure time 200 nsec trigger voltage 148 kV) 
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sufficient for the size of the HCP3 trigger to form a uniform initiation of breakdown. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

The computer simulation code for the theoretical analysis of an inverse-pinch plasma 

switch was developed using a 2-dimensional, two-temperature MHD model. The applica- 

tion of the code was made for the disk-type inverse-pinch switch geometry. The results 

from the computer simulation of the disk-type switch are generally in agreement with the 

measured data in the experiment. Further applications of the code to the other inverse- 

pinch geometries and the generalization of the code in use are recommended. 

An inverse-pinch plasma switch for closing has been designed and tested for high-power 

switching requirements. Successful development of the inverse-pinch plasma switch mainly 

depends on a trigger which produces an azimuthally uniform initiation of breakdown for 

an inverse-pinch current path in the switch. 

The types of triggers which were tested are trigger pins, wire-brush trigger, ring 

trigger, and hypocycloidal-pinch (HCP) plasma puff trigger. Among the triggers tested, 

the HCP plasma puff was the only one which successfully produced an azimuthally uniform 

plasma-ring (or ring-shaped plasma puff) and injected the plasma-ring into the gap of the 

switch electrodes for a uniform breakdown. 

The diameter of the HCP devices as a trigger is a factor that also determines uniform 

breakdown. Various sizes (from 5-cm to 15-cm diameter) of the HCP3 trigger, which is 

coaxially located below the outer electrode of the inverse-pinch switch, have been tested 

to find the optimal pressure range for uniform breakdown. The results indicate that the 

HCP3 with a large diameter has less frequent uniform breakdown than that of an HCP3 

trigger with a small diameter. 

Further study of the HCP3 trigger is still necessary to determine the size, the range 

of fill gas pressure, the delay time, the noise, and the gap distance for uniform breakdown. 

These are indeed crucial for the inverse-pinch current path in the switch. 
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